81495 measured reflections

 $R_{\rm int} = 0.046$

829 parameters

 $\Delta \rho_{\rm max} = 0.38 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.26 \text{ e} \text{ Å}^{-3}$

18387 independent reflections

12498 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

(1*E*,4*E*)-1,5-Bis(2,4,5-trimethoxyphenyl)penta-1,4-dien-3-one¹

Hoong-Kun Fun,^a*§ Pumsak Ruanwas^b and Suchada Chantrapromma^b¶

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand

Correspondence e-mail: hkfun@usm.my

Received 12 December 2009; accepted 25 December 2009

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.067; wR factor = 0.150; data-to-parameter ratio = 22.2.

There are three molecules in the asymmetric unit of the title compound, $C_{23}H_{26}O_7$, in which the dihedral angles between two benzene rings are 4.34 (9), 18.11 (8) and 8.54 (8)°. The central penta-1,4-dien-3-one fragment makes dihedral angles of 3.95 (9) and 3.32 $(16)^{\circ}$ with the two adjacent benzene rings in one molecule, whereas the corresponding pairs of angles in the other two molecules are $10.34 (9)/17.46 (8)^{\circ}$ and 7.87 (8)/13.33 (8)°. In the crystal, molecules are linked by intermolecular C-H···O and C-H··· π weak interactions into a three-dimensional network. Finally, $\pi - \pi$ interactions [centroid · · · centroid 3.5984 (10) distances and = 3.5545 (10) Å] are observed.

Related literature

For bond-length data, see: Allen *et al.* (1987). For hydrogenbond motifs, see: Bernstein *et al.* (1995). For a related structure, see: Harrison *et al.* (2006). For background to and applications of chalcones, see: Baeyer & von Villiger (1902); Gomes *et al.* (2009); Gould *et al.* (1995); Masuda *et al.* (1993); Quincoces *et al.* (2002; 2003; 2008); Uchida *et al.* (1998). For the stability of the temperature controller, see: Cosier & Glazer, (1986).

¹This paper is dedicated to His Majesty King Bhumibol Adulyadej of Thailand (King Rama IX) for his sustainable development of the country. § Thomson Reuters ResearcherID: A-3561-2009.

Experimental

Crystal data

Data collection

Bruker APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\rm min} = 0.965, T_{\rm max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.067$ $wR(F^2) = 0.150$ S = 1.0618387 reflections

Table 1

Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the C1C-C6C and C12C-C17C rings, respectively.

$D - H \cdots A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots $
$C10B - H10B \cdots O1C^{i}$	0.93	2.29	3.149 (2)	153
C10C−H10C···O1B	0.93	2.33	3.195 (2)	155
$C14B - H14B \cdots O1A^{ii}$	0.93	2.52	3.353 (2)	149
$C21A - H21B \cdots O3A^{iii}$	0.96	2.49	3.301 (2)	142
$C22A - H22C \cdots O7C^{iv}$	0.96	2.50	3.435 (2)	165
$C22B - H22D \cdots O2A^{v}$	0.96	2.50	3.407 (2)	158
$C22B - H22F \cdots O1A^{ii}$	0.96	2.58	3.227 (2)	125
$C23A - H23A \cdots O5A^{i}$	0.96	2.52	3.308 (2)	140
$C23A - H23C \cdots O3C$	0.96	2.53	3.452 (2)	161
$C23C - H23G \cdots O5C^{i}$	0.96	2.54	3.305 (2)	136
$C18C - H18H \cdot \cdot \cdot Cg4^{ii}$	0.96	2.80	3.678 (2)	152
$C20A - H20B \cdots Cg3^{vi}$	0.96	2.94	3.855 (2)	159
Symmetry codes: (i)	$r \perp 1$ v		$-r \pm 1 - v \pm 2$	_7 ⊥ 1· (iji

Symmetry codes: (1) x + 1, y, z; (ii) -x + 1, -y + 2, -z + 1; (iii) -x + 2, -y + 2, -z + 2; (iv) $x, -y + \frac{3}{2}, z + \frac{1}{2}$; (v) x, y, z - 1; (vi) -x + 2, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

PR thanks the Graduate School, Prince of Songkla University, for a research grant. The authors thank Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5282).

[¶] Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Baeyer, A. von & Villiger, V. (1902). Chem. Ber. 35, 1201-1212.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Gomes, A., Neuwirth, O., Freitas, M., Couto, D., Ribeiro, D., Figueiredo, A. G. P. R., Silva, A. M. S., Seixas, R. S. G. R., Pinto, D. C. G. A., Tomé, A. C., Cavaleiro, J. A. S., Fernandes, E. & Lima, J. L. F. C. (2009). *Bioorg. Med. Chem.* 17, 7218–7226.
- Gould, B. S., Panneerelvam, K., Zacharias, D. E. & Desiraju, G. R. (1995). J. Chem. Soc. Perkin Trans 2, pp. 325–330.

- Harrison, W. T. A., Sarojini, B. K., Raj, K. K. V., Yathirajan, H. S. & Narayana, B. (2006). *Acta Cryst.* E62, o1522–o1523.
- Masuda, T., Jitoe, A., Isobe, J., Nakatani, N. & Yonemori, S. (1993). *Phytochemistry*, **32**, 1557–1560.
- Quincoces, J., Peseke, K., Kordian, M., Carvalho, J., Brunhari, H., Kohn, L. & Antônio, M. (2002). Patent PI 0207141-0, 28.11.2002.
- Quincoces, J., Peseke, K., Kordian, M., Carvalho, J., Brunhari, H., Kohn, L. & Antônio, M. (2003). Patent PCT/BR 2003/000177.
- Quincoces, J., Peseke, K., Kordian, M., Carvalho, J., Brunhari, H., Kohn, L. & Antônio, M. (2008). Patent No. US 7,432,401 B2, Oct. 7, 2008.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D36, 148-155.
- Uchida, T., Kozawa, K., Sakai, T., Aoki, M., Yoguchi, H., Abduryim, A. & Watanabe, Y. (1998). Mol. Cryst. Liq. Cryst. 315, 135–140.

Acta Cryst. (2010). E66, o307-o308 [doi:10.1107/S1600536809055421]

(1E,4E)-1,5-Bis(2,4,5-trimethoxyphenyl)penta-1,4-dien-3-one

H.-K. Fun, P. Ruanwas and S. Chantrapromma

Comment

Bischalcones with the general formula Ar—CH=CH—CO—CH=CH—Ar (Baeyer & Villiger, 1902) are an important class of compounds because they are widely used in many fields such as in organic solid-state photochemistry (Gould *et al.*, 1995), anti-oxidative and anti-inflammatory activities (Masuda *et al.*, 1993), cytotoxicity (Quincoces *et al.*, 2002; 2003; 2008) and activities involving their non-linear optical (Uchida *et al.*, 1998) and fluorescence properties (Gomes *et al.*, 2009). However not much crystal structures of this type of compound were reported. The title bischalcone (I) was synthesized on the account of its fluorescence property which will be reported elsewhere together with the other bichalcone derivatives. We reported herein the crystal structure of (I).

There are three crystallographic independent molecules *A*, *B* and *C* in the asymmetric unit of (I) (Fig. 1) with slight differences in bond angles. The molecular structure of (I), $C_{23}H_{26}O_7$, is not planar. The dihedral angle between the C1–C6 and C12–C17 benzene rings is 4.34 (9)° in molecule *A* whereas its is 18.11 (8) and 8.54 (8)° in molecules *B* and *C*, respectively. The central penta-1,4-dien-3-one fragment (C7–C11/O1) is planar with the r.m.s. 0.0204 (2) Å for molecule *A* [0.0227 (2) and 0.0252 (2) Å for molecule *B* and *C*, respectively]. This fragment makes the dihedral angles of 3.95 (9) and 3.32 (16)° with the two adjacent C1–C6 and C12–C17 benzene rings, respectively in molecule *A* whereas the corresponding values are 10.34 (9) and 17.46 (8)° in molecule *B*; and 7.87 (8) and 13.33 (8)° in the molecule *C*. The three methoxy groups on C1–C6 benzene ring are essentially planarly attached [C18–O2–C1–C2, C19–O3–C3–C2 and C20–O4–C4–C5 torsion angles of -3.7 (2), 1.4 (3) and -3.9 (2)° in molecule *A*; -0.2 (3), 3.5 (3) and -1.7 (2)° in molecule *B*; 3.8 (3), 4.4 (3) and -4.3 (3)° in molecule *C*]. The middle methoxy group of the 2,4,5-trimethoxyphenyl moeity is co-planar with the C12–C17 benzene ring, with the C22–O6–C15–C14 torsion angle being 1.1 (3)° whereas the other two methoxy groups are twisted with the torsion angles C21–O5–C13–C14 and C23–O7–C16–C17 being -111.48 (18) and -14.4 (3)°, respectively in molecule *A* [the three corresponding values are -7.6 (3), -30.2 (2) and 9.6 (2)° in molecule *B* and 0.4 (3), 73.5 (2) and -8.2 (3)° in molecule *C*]. Intramolecular C—H···O weak interactions (Table 1) generate S(5) ring motifs (Bernstein *et al.*, 1995). The bond distances agree with the literature values (Allen *et al.*, 1987) and are comparable with the related structure (Harrison *et al.*, 2006).

In the crystal packing (Fig. 2), the molecules are linked by intermolecular C—H···O weak interactions (Table 1) into a supramolecular three-dimensional network. The crystal is stabilized by intra- and intermolecular C—H···O weak interactions and C—H··· π interactions (Table 1). π – π interactions were observed with the distances of Cg_1 ··· Cg_4 = 3.5984 (10) Å (symmetry code: x, y, z) and Cg_2 ··· Cg_5 = 3.5984 (10) Å (symmetry code: 1 + x, 3/2 - y, 1/2 + z); Cg_1, Cg_2, Cg_3, Cg_4 and Cg_5 are the centroids of C12A–C17A, C1B–C6B, C12B–C17B, C1C–C6C and C12C–C17B rings, respectively.

Experimental

The title compound was synthesized by dissolving 2,4,5-trimethoxybenzaldehyde (0.5 g, 4.85 mmol) in acetone (50 ml). NaOH 50% aqueous solution (2 ml) was then added. After stirring at room temperature for 1 hr, the resulting orange solid

was collected by filtration, washed with distilled water and dried. Pale yellow blocks of (I) were recrystalized from acetone/ethanol (1:1 v/v) by the slow evaporation of the solvent at room temperature after a week, Mp. 441–442 K.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å for aromatic and CH; 0.96 Å for CH₃ atoms. The U_{iso} values were constrained to be $1.5U_{eq}$ of the carrier atom for methyl H atoms and $1.2U_{eq}$ for the remaining H atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is 0.71 Å from C12C and the deepest hole is 0.45 Å from C9A.

Figures

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. H atoms of molecules B and C are omitted for clarity.

Fig. 2. The crystal packing of (I) viewed along the a axis, showing the three-dimensional network. Hydrogen bonds are shown as dashed lines.

(1E,4E)-1,5-Bis(2,4,5-trimethoxyphenyl)penta-1,4-dien-3-one

Crystal data $C_{23}H_{26}O_7$ $M_r = 414.44$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.4157 (1) Å b = 36.8613 (5) Å c = 19.1226 (3) Å $\beta = 107.737$ (1)° V = 6321.49 (15) Å³ Z = 12

F(000) = 2640 $D_x = 1.306 \text{ Mg m}^{-3}$ Melting point = 441–442 K Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 18387 reflections $\theta = 1.1-30.0^{\circ}$ $\mu = 0.10 \text{ mm}^{-1}$ T = 100 KBlock, colorless $0.37 \times 0.22 \times 0.13 \text{ mm}$

Data collection

Bruker APEXII CCD area-detector diffractometer	18387 independent reflections
Radiation source: sealed tube	12498 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.046$
phi and ω scans	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -13 \rightarrow 13$
$T_{\min} = 0.965, T_{\max} = 0.988$	$k = -45 \rightarrow 51$
81495 measured reflections	$l = -26 \rightarrow 26$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.067$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.150$	H-atom parameters constrained
<i>S</i> = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.0517P)^2 + 4.2947P]$ where $P = (F_o^2 + 2F_c^2)/3$
18387 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
829 parameters	$\Delta \rho_{max} = 0.38 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.25 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01A	0.61853 (14)	0.99343 (4)	0.88798 (8)	0.0259 (3)
O2A	0.77349 (15)	1.09843 (4)	1.05130 (7)	0.0262 (3)
O3A	1.27431 (15)	1.14769 (4)	1.10886 (7)	0.0279 (3)
O4A	1.34759 (15)	1.09825 (4)	1.03136 (7)	0.0274 (3)

O5A	0.47925 (14)	0.89473 (3)	0.70474 (7)	0.0242 (3)
O6A	0.83737 (14)	0.84534 (3)	0.59545 (7)	0.0238 (3)
O7A	1.03708 (14)	0.89136 (4)	0.66503 (8)	0.0257 (3)
C1A	0.9167 (2)	1.09853 (5)	1.04751 (10)	0.0203 (4)
C2A	1.0225 (2)	1.12410 (5)	1.08416 (10)	0.0225 (4)
H2AA	0.9977	1.1416	1.1134	0.027*
C3A	1.1646 (2)	1.12340 (5)	1.07698 (10)	0.0218 (4)
C4A	1.2038 (2)	1.09658 (5)	1.03338 (10)	0.0212 (4)
C5A	1.0980 (2)	1.07165 (5)	0.99736 (10)	0.0198 (4)
H5AA	1.1233	1.0542	0.9681	0.024*
C6A	0.95201 (19)	1.07169 (5)	1.00345 (9)	0.0189 (3)
C7A	0.84093 (19)	1.04502 (5)	0.96501 (9)	0.0191 (3)
H7AA	0.7457	1.0472	0.9695	0.023*
C8A	0.86455 (19)	1.01757 (5)	0.92372 (9)	0.0184 (3)
H8AA	0.9607	1.0138	0.9214	0.022*
C9A	0.74500 (19)	0.99314 (5)	0.88200 (9)	0.0182 (3)
C10A	0.78751 (19)	0.96863 (5)	0.83046 (10)	0.0193 (3)
H10A	0.8828	0.9706	0.8260	0.023*
C11A	0.69497 (19)	0.94367 (5)	0.78996 (10)	0.0190 (3)
H11A	0.5998	0.9424	0.7949	0.023*
C12A	0.72921 (19)	0.91817 (5)	0.73880 (9)	0.0180 (3)
C13A	0.62264 (18)	0.89351 (5)	0.69924 (10)	0.0192 (3)
C14A	0.65461 (19)	0.86840 (5)	0.65119 (10)	0.0201 (4)
H14A	0.5822	0.8519	0.6260	0.024*
C15A	0.79434 (19)	0.86815 (5)	0.64133 (10)	0.0191 (3)
C16A	0.90353 (19)	0.89331 (5)	0.67985 (10)	0.0191 (3)
C17A	0.87092 (19)	0.91748 (5)	0.72729 (10)	0.0191 (3)
H17A	0.9437	0.9338	0.7526	0.023*
C18A	0.7343 (2)	1.12439 (6)	1.09820 (11)	0.0297 (4)
H18A	0.6322	1.1209	1.0964	0.045*
H18B	0.7469	1.1485	1.0819	0.045*
H18C	0.7976	1.1212	1.1477	0.045*
C19A	1.2386 (2)	1.17568 (5)	1.15221 (11)	0.0315 (5)
H19A	1.3210	1.1922	1.1683	0.047*
H19B	1.2186	1.1651	1.1942	0.047*
H19C	1.1520	1.1886	1.1233	0.047*
C20A	1.3885 (2)	1.07307 (6)	0.98420 (12)	0.0319 (5)
H20A	1.4908	1.0769	0.9867	0.048*
H20B	1.3260	1.0766	0.9346	0.048*
H20C	1.3762	1.0488	0.9995	0.048*
C21A	0.4405 (2)	0.86423 (5)	0.74166 (11)	0.0258 (4)
H21A	0.3344	0.8636	0.7323	0.039*
H21B	0.4888	0.8664	0.7935	0.039*
H21C	0.4723	0.8423	0.7239	0.039*
C22A	0.7279 (2)	0.82026 (5)	0.55365 (11)	0.0271 (4)
H22A	0.7709	0.8055	0.5240	0.041*
H22B	0.6445	0.8334	0.5225	0.041*
H22C	0.6949	0.8051	0.5864	0.041*
C23A	1.1351 (2)	0.92146 (5)	0.68810 (12)	0.0271 (4)

H23A	1.2172	0.9192	0.6685	0.041*
H23B	1.1720	0.9220	0.7407	0.041*
H23C	1.0821	0.9435	0.6706	0.041*
O1B	0.67886 (14)	0.79921 (4)	0.36869 (8)	0.0296 (3)
O2B	0.90239 (14)	0.70489 (4)	0.53331 (8)	0.0273 (3)
O3B	1.41632 (14)	0.66614 (4)	0.58013 (7)	0.0267 (3)
O4B	1.45884 (14)	0.71537 (4)	0.49398 (8)	0.0297 (3)
O5B	0.52194 (14)	0.92198 (3)	0.26449 (7)	0.0223 (3)
O6B	0.84488 (14)	0.99180 (3)	0.15955 (7)	0.0236 (3)
O7B	1.04120 (13)	0.94003 (3)	0.19064 (7)	0.0213 (3)
C1B	1.04099 (19)	0.70706 (5)	0.52494 (10)	0.0201 (4)
C2B	1.1587 (2)	0.68375 (5)	0.56056 (10)	0.0202 (4)
H2BA	1.1447	0.6659	0.5921	0.024*
C3B	1.2953 (2)	0.68751 (5)	0.54854 (10)	0.0209 (4)
C4B	1.3190 (2)	0.71448 (5)	0.50116 (10)	0.0220 (4)
C5B	1.20241 (19)	0.73714 (5)	0.46616 (10)	0.0204 (4)
H5BA	1.2170	0.7549	0.4346	0.024*
C6B	1.06154 (19)	0.73390 (5)	0.47726 (10)	0.0191 (3)
C7B	0.93671 (19)	0.75743 (5)	0.44029 (10)	0.0195 (3)
H7BA	0.8464	0.7524	0.4486	0.023*
C8B	0.93721 (19)	0.78538 (5)	0.39580 (10)	0.0201 (4)
H8BA	1.0248	0.7913	0.3856	0.024*
C9B	0.80148 (18)	0.80706 (5)	0.36257 (10)	0.0183 (3)
C10B	0.82631 (19)	0.83942 (5)	0.32294 (10)	0.0199 (4)
H10B	0.9200	0.8424	0.3169	0.024*
C11B	0.72314 (18)	0.86483 (5)	0.29492 (9)	0.0170 (3)
H11B	0.6277	0.8612	0.2983	0.020*
C12B	0.75129 (18)	0.89799 (4)	0.25939 (9)	0.0154 (3)
C13B	0.64957 (18)	0.92681 (5)	0.24499 (9)	0.0164 (3)
C14B	0.67679 (19)	0.95861 (5)	0.21126 (10)	0.0183 (3)
H14B	0.6070	0.9773	0.2009	0.022*
C15B	0.80799 (19)	0.96226 (5)	0.19337 (9)	0.0170 (3)
C16B	0.91373 (18)	0.93376 (5)	0.20913 (9)	0.0169 (3)
C17B	0.88319 (18)	0.90239 (5)	0.24028 (9)	0.0171 (3)
H17B	0.9517	0.8835	0.2490	0.021*
C18B	0 8747 (2)	0 67823 (5)	0 58179 (11)	0.0277 (4)
H18D	0 7715	0 6790	0 5795	0.042*
H18E	0.9356	0.6832	0.6311	0.042*
H18F	0.8985	0.6546	0 5674	0.042*
C19B	1 3972 (2)	0.63691 (5)	0.62517 (11)	0.0271(4)
H19D	1 4889	0.6236	0.6429	0.041*
H19E	1 3200	0.6211	0.5969	0.041*
H19E	1 3698	0.6463	0.6660	0.041*
C20B	1 4894 (2)	0.74387 (6)	0.45006 (13)	0.0386(5)
H20D	1 5918	0.7426	0.4510	0.058*
H20E	1 4711	0.7669	0 4692	0.058*
H20F	1 4258	0 7413	0 4004	0.058*
C21B	0 4564 (2)	0.95365 (5)	0 28354 (11)	0.0254(4)
H21D	0.3852	0.9469	0.3080	0.023+(+)
112112	0.3032	0.7407	0.5000	0.050

H21E	0.4070	0.9671	0.2398	0.038*
H21F	0.5326	0.9685	0.3157	0.038*
C22B	0.7315 (2)	1.01884 (5)	0.13343 (12)	0.0280 (4)
H22D	0.7693	1.0381	0.1103	0.042*
H22E	0.7033	1.0284	0.1740	0.042*
H22F	0.6461	1.0081	0.0985	0.042*
C23B	1.1362 (2)	0.90947 (5)	0.19467 (11)	0.0255 (4)
H23D	1.2174	0.9161	0.1768	0.038*
H23E	1.0804	0.8901	0.1652	0.038*
H23F	1.1747	0.9016	0.2447	0.038*
O1C	0.17116 (13)	0.85328 (4)	0.35904 (7)	0.0250 (3)
O2C	0.36440 (14)	0.94816 (3)	0.52907 (7)	0.0225 (3)
O3C	0.88225 (14)	0.98683 (3)	0.59876 (7)	0.0230 (3)
O4C	0.93952 (13)	0.93975 (3)	0.51207 (7)	0.0228 (3)
O5C	0.00738 (14)	0.74097 (3)	0.20661 (7)	0.0238 (3)
O6C	0.33553 (14)	0.68688 (3)	0.08487 (7)	0.0235 (3)
O7C	0.54343 (14)	0.73320 (4)	0.14497 (8)	0.0269 (3)
C1C	0.50778 (18)	0.94655 (5)	0.52632 (9)	0.0174 (3)
C2C	0.62239 (19)	0.96902 (5)	0.56811 (9)	0.0182 (3)
H2CA	0.6031	0.9860	0.6000	0.022*
C3C	0.76404 (19)	0.96585 (5)	0.56170 (9)	0.0176 (3)
C4C	0.79536 (18)	0.94012 (5)	0.51384 (10)	0.0178 (3)
C5C	0.68220 (18)	0.91813 (5)	0.47306 (9)	0.0168 (3)
H5CA	0.7024	0.9012	0.4413	0.020*
C6C	0.53558 (18)	0.92067 (4)	0.47832 (9)	0.0163 (3)
C7C	0.41633 (18)	0.89700 (4)	0.43687 (9)	0.0165 (3)
H7CA	0.3206	0.9029	0.4374	0.020*
C8C	0.42894 (18)	0.86764 (4)	0.39794 (9)	0.0164 (3)
H8CA	0.5230	0.8606	0.3967	0.020*
C9C	0.29764 (18)	0.84615 (4)	0.35702 (9)	0.0157 (3)
C10C	0.32957 (18)	0.81622 (5)	0.31329 (9)	0.0178 (3)
H10C	0.4278	0.8127	0.3141	0.021*
C11C	0.22491 (18)	0.79370 (5)	0.27220 (9)	0.0168 (3)
H11C	0.1277	0.7966	0.2735	0.020*
C12C	0.25297 (18)	0.76502 (5)	0.22576 (9)	0.0167 (3)
C13C	0.14380 (18)	0.73940 (5)	0.19315 (9)	0.0180 (3)
C14C	0.16725 (19)	0.71267 (5)	0.14619 (10)	0.0197 (3)
H14C	0.0928	0.6958	0.1254	0.024*
C15C	0.30085 (19)	0.71122 (5)	0.13060 (10)	0.0191 (3)
C16C	0.41492 (19)	0.73680 (5)	0.16373 (10)	0.0196 (4)
C17C	0.38995 (19)	0.76270 (5)	0.20996 (10)	0.0196 (4)
H17C	0.4652	0.7792	0.2316	0.023*
C18C	0.3321 (2)	0.97249 (5)	0.58045 (10)	0.0225 (4)
H18G	0.2274	0.9717	0.5750	0.034*
H18H	0.3597	0.9967	0.5714	0.034*
H18I	0.3876	0.9654	0.6295	0.034*
C19C	0.8569 (2)	1.01450 (5)	0.64584 (11)	0.0271 (4)
H19G	0.9477	1.0277	0.6674	0.041*
Н19Н	0.8244	1.0036	0.6839	0.041*

H19I	0.7815	1.0308	0.6178	0.041*
C20C	0.9770 (2)	0.91258 (6)	0.46759 (12)	0.0299 (4)
H20G	1.0814	0.9141	0.4724	0.045*
H20H	0.9197	0.9163	0.4172	0.045*
H20I	0.9552	0.8890	0.4832	0.045*
C21C	-0.0131 (2)	0.71272 (6)	0.25332 (12)	0.0330 (5)
H21G	-0.1110	0.7146	0.2587	0.049*
H21H	0.0604	0.7149	0.3006	0.049*
H21I	-0.0026	0.6896	0.2322	0.049*
C22C	0.2219 (2)	0.66088 (5)	0.05013 (11)	0.0283 (4)
H22G	0.2587	0.6449	0.0200	0.042*
H22H	0.1352	0.6734	0.0202	0.042*
H22I	0.1960	0.6471	0.0870	0.042*
C23C	0.6505 (2)	0.76178 (5)	0.16901 (12)	0.0302 (5)
H23G	0.7337	0.7574	0.1511	0.045*
H23H	0.6843	0.7625	0.2217	0.045*
H23I	0.6051	0.7845	0.1504	0.045*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1A	0.0184 (6)	0.0268 (7)	0.0349 (8)	-0.0002 (5)	0.0116 (5)	-0.0028 (6)
O2A	0.0277 (7)	0.0229 (7)	0.0320 (8)	0.0025 (5)	0.0152 (6)	-0.0038 (6)
O3A	0.0293 (7)	0.0241 (7)	0.0269 (7)	-0.0018 (5)	0.0033 (6)	-0.0076 (6)
O4A	0.0213 (7)	0.0316 (8)	0.0291 (7)	-0.0044 (5)	0.0072 (5)	-0.0085 (6)
O5A	0.0151 (6)	0.0236 (7)	0.0350 (8)	0.0000 (5)	0.0092 (5)	0.0000 (6)
O6A	0.0234 (7)	0.0235 (7)	0.0270 (7)	0.0004 (5)	0.0112 (5)	-0.0027 (5)
O7A	0.0188 (6)	0.0252 (7)	0.0376 (8)	-0.0012 (5)	0.0155 (6)	-0.0026 (6)
C1A	0.0244 (9)	0.0181 (9)	0.0196 (9)	0.0037 (7)	0.0084 (7)	0.0048 (7)
C2A	0.0314 (10)	0.0172 (9)	0.0183 (9)	0.0046 (7)	0.0069 (7)	0.0014 (7)
C3A	0.0266 (9)	0.0181 (9)	0.0170 (9)	-0.0005 (7)	0.0010 (7)	0.0021 (7)
C4A	0.0217 (9)	0.0228 (9)	0.0185 (9)	0.0005 (7)	0.0054 (7)	0.0019 (7)
C5A	0.0225 (9)	0.0186 (9)	0.0175 (9)	0.0019 (6)	0.0051 (7)	0.0018 (7)
C6A	0.0217 (9)	0.0173 (9)	0.0173 (8)	0.0018 (6)	0.0054 (7)	0.0027 (7)
C7A	0.0184 (8)	0.0195 (9)	0.0201 (9)	0.0019 (6)	0.0071 (7)	0.0049 (7)
C8A	0.0168 (8)	0.0174 (8)	0.0212 (9)	0.0015 (6)	0.0060 (6)	0.0036 (7)
C9A	0.0193 (8)	0.0154 (8)	0.0196 (9)	0.0027 (6)	0.0058 (6)	0.0057 (7)
C10A	0.0156 (8)	0.0211 (9)	0.0222 (9)	0.0021 (6)	0.0072 (6)	0.0029 (7)
C11A	0.0157 (8)	0.0190 (9)	0.0231 (9)	0.0030 (6)	0.0070 (6)	0.0044 (7)
C12A	0.0165 (8)	0.0181 (9)	0.0194 (9)	0.0017 (6)	0.0053 (6)	0.0036 (7)
C13A	0.0144 (8)	0.0190 (9)	0.0247 (9)	0.0018 (6)	0.0065 (6)	0.0042 (7)
C14A	0.0170 (8)	0.0200 (9)	0.0222 (9)	-0.0006 (6)	0.0045 (7)	0.0016 (7)
C15A	0.0211 (9)	0.0180 (9)	0.0188 (9)	0.0029 (6)	0.0069 (7)	0.0024 (7)
C16A	0.0151 (8)	0.0199 (9)	0.0234 (9)	0.0021 (6)	0.0076 (6)	0.0045 (7)
C17A	0.0158 (8)	0.0183 (9)	0.0227 (9)	-0.0005 (6)	0.0052 (6)	0.0021 (7)
C18A	0.0340 (11)	0.0280 (11)	0.0315 (11)	0.0058 (8)	0.0165 (9)	-0.0032 (9)
C19A	0.0364 (11)	0.0216 (10)	0.0291 (11)	0.0049 (8)	-0.0010 (8)	-0.0069 (8)
C20A	0.0237 (10)	0.0398 (12)	0.0347 (11)	-0.0057 (8)	0.0124 (8)	-0.0117 (9)

C21A	0.0184 (9)	0.0304 (11)	0.0297 (10)	0.0001 (7)	0.0089 (7)	0.0029 (8)
C22A	0.0307 (10)	0.0241 (10)	0.0277 (10)	-0.0030 (8)	0.0107 (8)	-0.0049 (8)
C23A	0.0157 (9)	0.0274 (10)	0.0399 (12)	0.0005 (7)	0.0110 (8)	0.0049 (9)
O1B	0.0167 (6)	0.0280 (7)	0.0447 (9)	0.0014 (5)	0.0103 (6)	0.0142 (6)
O2B	0.0206 (7)	0.0277 (7)	0.0363 (8)	0.0024 (5)	0.0125 (6)	0.0091 (6)
O3B	0.0198 (6)	0.0260 (7)	0.0323 (8)	0.0043 (5)	0.0049 (5)	0.0127 (6)
O4B	0.0185 (7)	0.0335 (8)	0.0384 (8)	0.0035 (5)	0.0105 (6)	0.0149 (6)
O5B	0.0175 (6)	0.0169 (6)	0.0377 (8)	0.0012 (5)	0.0159 (5)	0.0003 (5)
O6B	0.0194 (6)	0.0195 (7)	0.0342 (8)	0.0009 (5)	0.0114 (5)	0.0082 (6)
O7B	0.0169 (6)	0.0215 (7)	0.0284 (7)	0.0008 (5)	0.0113 (5)	0.0036 (5)
C1B	0.0194 (8)	0.0194 (9)	0.0216 (9)	-0.0014 (6)	0.0064 (7)	-0.0017 (7)
C2B	0.0233 (9)	0.0165 (9)	0.0192 (9)	-0.0012 (6)	0.0042 (7)	0.0016 (7)
C3B	0.0201 (9)	0.0187 (9)	0.0202 (9)	0.0022 (6)	0.0009 (7)	0.0014 (7)
C4B	0.0174 (8)	0.0238 (9)	0.0237 (9)	0.0004 (7)	0.0047 (7)	0.0017 (7)
C5B	0.0208 (9)	0.0182 (9)	0.0213 (9)	-0.0011 (6)	0.0051 (7)	0.0028 (7)
C6B	0.0188 (8)	0.0168 (9)	0.0198 (9)	0.0007 (6)	0.0029 (6)	-0.0008 (7)
C7B	0.0158 (8)	0.0197 (9)	0.0227 (9)	-0.0006 (6)	0.0051 (6)	-0.0017 (7)
C8B	0.0150 (8)	0.0198 (9)	0.0251 (9)	0.0013 (6)	0.0056 (7)	0.0012 (7)
C9B	0.0154 (8)	0.0161 (8)	0.0219 (9)	0.0005 (6)	0.0034 (6)	0.0001 (7)
C10B	0.0118 (8)	0.0207 (9)	0.0268 (9)	-0.0015 (6)	0.0055 (6)	0.0008 (7)
C11B	0.0131 (8)	0.0178 (8)	0.0204 (9)	-0.0025 (6)	0.0054 (6)	-0.0011 (7)
C12B	0.0143 (8)	0.0151 (8)	0.0155 (8)	-0.0016 (6)	0.0025 (6)	-0.0013 (6)
C13B	0.0126 (7)	0.0169 (8)	0.0195 (8)	-0.0030 (6)	0.0047 (6)	-0.0023 (7)
C14B	0.0169 (8)	0.0145 (8)	0.0224 (9)	0.0011 (6)	0.0044 (6)	-0.0014 (7)
C15B	0.0179 (8)	0.0143 (8)	0.0179 (8)	-0.0024 (6)	0.0039 (6)	-0.0004 (6)
C16B	0.0132 (8)	0.0205 (9)	0.0165 (8)	-0.0018 (6)	0.0040 (6)	-0.0021 (7)
C17B	0.0139 (8)	0.0177 (8)	0.0189 (8)	0.0010 (6)	0.0035 (6)	-0.0009 (7)
C18B	0.0292 (10)	0.0247 (10)	0.0336 (11)	-0.0028(8)	0.0159 (8)	0.0034 (8)
C19B	0.0267 (10)	0.0226 (10)	0.0291 (10)	0.0047 (7)	0.0042 (8)	0.0104 (8)
C20B	0.0231 (10)	0.0437 (13)	0.0514 (14)	0.0011 (9)	0.0148 (9)	0.0236 (11)
C21B	0.0282 (10)	0.0212 (10)	0.0328 (11)	0.0048 (7)	0.0182 (8)	0.0007 (8)
C22B	0.0249 (10)	0.0202 (10)	0.0412 (12)	0.0035 (7)	0.0138 (8)	0.0092 (8)
C23B	0.0186 (9)	0.0259 (10)	0.0354 (11)	0.0047 (7)	0.0135 (8)	0.0057 (8)
01C	0.0131 (6)	0.0277 (7)	0.0340 (8)	-0.0007(5)	0.0070 (5)	-0.0082(6)
O2C	0.0175 (6)	0.0241 (7)	0.0276 (7)	-0.0011(5)	0.0093 (5)	-0.0071(5)
03C	0.0173 (6)	0 0227 (7)	0.0262(7)	-0.0032(5)	0.0026(5)	-0.0091(5)
04C	0.0134(6)	0.0227(7)	0.0285(7)	-0.0025(5)	0.0020(5)	-0.0082(5)
050	0.0167 (6)	0.0236(7)	0.0238(7)	-0.0039(5)	0.0118 (5)	-0.0013(6)
060	0.0228(7)	0.0217 (7)	0.0272(7)	-0.0021(5)	0.0096 (5)	-0.0085(5)
07C	0.0189 (6)	0.0256 (7)	0.0410 (8)	-0.0032(5)	0.0162 (6)	-0.0091(6)
CIC	0.0152 (8)	0.0168 (8)	0 0204 (9)	0 0004 (6)	0.0058 (6)	0.0021 (7)
C2C	0.0182(8)	0.0157 (8)	0.0187 (8)	0.0002 (6)	0.0039(6)	-0.0011(7)
C3C	0.0181 (8)	0.0159 (8)	0.0159 (8)	-0.0013(6)	0.0010 (6)	-0.0001(7)
C4C	0.0139 (8)	0.0181 (9)	0.0203 (9)	0.0001 (6)	0.0039 (6)	0.0005 (7)
C5C	0.0148 (8)	0.0172 (8)	0.0176 (8)	0.0000 (6)	0.0036 (6)	-0.0006 (7)
C6C	0.0156 (8)	0.0149 (8)	0.0168 (8)	-0.0009(6)	0.0025 (6)	0.0011 (6)
C7C	0.0137 (7)	0.0168 (8)	0.0186 (8)	-0.0001(6)	0.0043 (6)	0.0035 (7)
C8C	0.0118 (7)	0.0169 (8)	0.0199 (8)	-0.0004(6)	0.0038 (6)	0.0002 (7)
C9C	0.0149 (8)	0.0140 (8)	0.0173 (8)	-0.0008(6)	0.0036 (6)	0.0017 (6)
	(0)		(3)		(0)	

C10C	0.0135 (8)	0.0174 (8)	0.0230 (9)	0.0009 (6)	0.0062 (6)	0.0003 (7)
C11C	0.0138 (8)	0.0171 (8)	0.0202 (9)	0.0007 (6)	0.0060 (6)	0.0017 (7)
C12C	0.0161 (8)	0.0158 (8)	0.0183 (8)	-0.0006 (6)	0.0054 (6)	0.0009 (7)
C13C	0.0142 (8)	0.0191 (9)	0.0210 (9)	0.0002 (6)	0.0058 (6)	0.0021 (7)
C14C	0.0180 (8)	0.0167 (9)	0.0227 (9)	-0.0037 (6)	0.0035 (7)	-0.0018 (7)
C15C	0.0203 (8)	0.0175 (9)	0.0197 (9)	0.0002 (6)	0.0063 (7)	-0.0009 (7)
C16C	0.0147 (8)	0.0199 (9)	0.0256 (9)	0.0003 (6)	0.0081 (7)	0.0003 (7)
C17C	0.0154 (8)	0.0188 (9)	0.0243 (9)	-0.0035 (6)	0.0057 (7)	-0.0028 (7)
C18C	0.0220 (9)	0.0237 (10)	0.0241 (9)	0.0004 (7)	0.0107 (7)	-0.0035 (8)
C19C	0.0246 (10)	0.0252 (10)	0.0281 (10)	-0.0024 (7)	0.0028 (8)	-0.0109 (8)
C20C	0.0170 (9)	0.0371 (12)	0.0367 (11)	-0.0013 (8)	0.0096 (8)	-0.0126 (9)
C21C	0.0330 (11)	0.0345 (12)	0.0387 (12)	-0.0051 (9)	0.0217 (9)	0.0023 (9)
C22C	0.0293 (10)	0.0265 (10)	0.0285 (10)	-0.0045 (8)	0.0079 (8)	-0.0109 (8)
C23C	0.0166 (9)	0.0306 (11)	0.0469 (13)	-0.0052 (7)	0.0150 (8)	-0.0111 (9)

Geometric parameters (Å, °)

O1A—C9A	1.230 (2)	C11B—C12B	1.461 (2)
O2A—C1A	1.372 (2)	C11B—H11B	0.9300
O2A—C18A	1.435 (2)	C12B—C13B	1.401 (2)
O3A—C3A	1.363 (2)	C12B—C17B	1.407 (2)
O3A—C19A	1.427 (2)	C13B—C14B	1.399 (2)
O4A—C4A	1.367 (2)	C14B—C15B	1.385 (2)
O4A—C20A	1.426 (2)	C14B—H14B	0.9300
O5A—C13A	1.386 (2)	C15B—C16B	1.415 (2)
O5A—C21A	1.433 (2)	C16B—C17B	1.371 (2)
O6A—C15A	1.363 (2)	C17B—H17B	0.9300
O6A—C22A	1.433 (2)	C18B—H18D	0.9600
O7A—C16A	1.373 (2)	C18B—H18E	0.9600
O7A—C23A	1.425 (2)	C18B—H18F	0.9600
C1A—C2A	1.396 (3)	C19B—H19D	0.9600
C1A—C6A	1.403 (2)	C19B—H19E	0.9600
C2A—C3A	1.386 (3)	C19B—H19F	0.9600
C2A—H2AA	0.9300	C20B—H20D	0.9600
C3A—C4A	1.413 (3)	C20B—H20E	0.9600
C4A—C5A	1.376 (2)	C20B—H20F	0.9600
C5A—C6A	1.415 (2)	C21B—H21D	0.9600
С5А—Н5АА	0.9300	C21B—H21E	0.9600
C6A—C7A	1.460 (2)	C21B—H21F	0.9600
C7A—C8A	1.343 (2)	C22B—H22D	0.9600
С7А—Н7АА	0.9300	C22B—H22E	0.9600
C8A—C9A	1.472 (2)	C22B—H22F	0.9600
C8A—H8AA	0.9300	C23B—H23D	0.9600
C9A-C10A	1.479 (2)	C23B—H23E	0.9600
C10A—C11A	1.340 (2)	C23B—H23F	0.9600
C10A—H10A	0.9300	O1C—C9C	1.232 (2)
C11A—C12A	1.462 (2)	O2C—C1C	1.368 (2)
C11A—H11A	0.9300	O2C—C18C	1.430 (2)
C12A—C13A	1.394 (2)	O3C—C3C	1.363 (2)

C12A—C17A	1.417 (2)	O3C—C19C	1.428 (2)
C13A—C14A	1.400 (3)	O4C—C4C	1.368 (2)
C14A—C15A	1.385 (2)	O4C—C20C	1.426 (2)
C14A—H14A	0.9300	O5C—C13C	1.386 (2)
C15A—C16A	1.414 (2)	O5C—C21C	1.423 (2)
C16A—C17A	1.371 (2)	O6C—C15C	1.360 (2)
C17A—H17A	0.9300	O6C—C22C	1.439 (2)
C18A—H18A	0.9600	O7C—C16C	1.369 (2)
C18A—H18B	0.9600	O7C—C23C	1.433 (2)
C18A—H18C	0.9600	C1C—C2C	1.401 (2)
C19A—H19A	0.9600	C1C—C6C	1.403 (2)
C19A—H19B	0.9600	C2C—C3C	1.381 (2)
С19А—Н19С	0.9600	C2C—H2CA	0.9300
C20A—H20A	0.9600	C3C—C4C	1.410 (2)
C20A—H20B	0.9600	C4C—C5C	1.376 (2)
C20A—H20C	0.9600	C5C—C6C	1.417 (2)
C21A—H21A	0.9600	С5С—Н5СА	0.9300
C21A—H21B	0.9600	C6C—C7C	1.452 (2)
C21A—H21C	0.9600	C7C—C8C	1.339 (2)
C22A—H22A	0.9600	С7С—Н7СА	0.9300
C22A—H22B	0.9600	C8C—C9C	1.476 (2)
C22A—H22C	0.9600	C8C—H8CA	0.9300
C23A—H23A	0.9600	C9C—C10C	1.470 (2)
C23A—H23B	0.9600	C10C—C11C	1.344 (2)
C23A—H23C	0.9600	C10C—H10C	0.9300
O1B—C9B	1.230 (2)	C11C—C12C	1.456 (2)
O2B—C1B	1.365 (2)	C11C—H11C	0.9300
O2B—C18B	1.428 (2)	C12C—C13C	1.395 (2)
O3B—C3B	1.366 (2)	C12C—C17C	1.414 (2)
O3B—C19B	1.425 (2)	C13C—C14C	1.395 (2)
O4B—C4B	1.366 (2)	C14C—C15C	1.379 (2)
O4B—C20B	1.428 (2)	C14C—H14C	0.9300
O5B—C13B	1.374 (2)	C15C—C16C	1.425 (2)
O5B—C21B	1.419 (2)	C16C—C17C	1.369 (2)
O6B—C15B	1.364 (2)	С17С—Н17С	0.9300
O6B—C22B	1.435 (2)	C18C—H18G	0.9600
O7B—C16B	1.370 (2)	С18С—Н18Н	0.9600
O7B—C23B	1.425 (2)	C18C—H18I	0.9600
C1B—C6B	1.398 (2)	C19C—H19G	0.9600
C1B—C2B	1.404 (2)	С19С—Н19Н	0.9600
C2B—C3B	1.381 (3)	С19С—Н19І	0.9600
C2B—H2BA	0.9300	C20C—H20G	0.9600
C3B—C4B	1.408 (3)	С20С—Н20Н	0.9600
C4B—C5B	1.379 (2)	C20C—H20I	0.9600
C5B—C6B	1.411 (2)	C21C—H21G	0.9600
C5B—H5BA	0.9300	С21С—Н21Н	0.9600
C6B—C7B	1.459 (2)	C21C—H21I	0.9600
C7B—C8B	1.337 (3)	C22C—H22G	0.9600
С7В—Н7ВА	0.9300	С22С—Н22Н	0.9600

C8B—C9B	1.477 (2)	C22C—H22I	0.9600
C8B—H8BA	0.9300	C23C—H23G	0.9600
C9B—C10B	1.470 (2)	С23С—Н23Н	0.9600
C10B—C11B	1.338 (2)	C23C—H23I	0.9600
C10B—H10B	0.9300		
C1A—O2A—C18A	118.38 (15)	C13B—C14B—H14B	120.1
C3A—O3A—C19A	117.03 (16)	O6B—C15B—C14B	124.72 (15)
C4A—O4A—C20A	116.68 (15)	O6B—C15B—C16B	115.41 (15)
C13A—O5A—C21A	114.34 (14)	C14B—C15B—C16B	119.86 (15)
C15A—O6A—C22A	116.90 (14)	O7B—C16B—C17B	124.78 (15)
C16A—O7A—C23A	116.30 (14)	O7B—C16B—C15B	115.77 (15)
O2A—C1A—C2A	122.55 (16)	C17B—C16B—C15B	119.45 (15)
O2A—C1A—C6A	116.50 (16)	C16B—C17B—C12B	121.93 (16)
C2A—C1A—C6A	120.95 (17)	C16B—C17B—H17B	119.0
C3A—C2A—C1A	120.04 (17)	C12B—C17B—H17B	119.0
СЗА—С2А—Н2АА	120.0	O2B-C18B-H18D	109.5
C1A—C2A—H2AA	120.0	O2B—C18B—H18E	109.5
O3A—C3A—C2A	124.48 (17)	H18D—C18B—H18E	109.5
O3A—C3A—C4A	115.16 (17)	O2B—C18B—H18F	109.5
C2A—C3A—C4A	120.34 (17)	H18D—C18B—H18F	109.5
O4A - C4A - C5A	126.01 (17)	H18E—C18B—H18F	109.5
O4A - C4A - C3A	115.09 (16)	O3B—C19B—H19D	109.5
C5A—C4A—C3A	118.90 (17)	O3B—C19B—H19E	109.5
C4A - C5A - C6A	122.12 (17)	H19D— $C19B$ — $H19E$	109.5
C4A - C5A - H5AA	118.9	O3B-C19B-H19F	109.5
C6A - C5A - H5AA	118.9	H19D— $C19B$ — $H19F$	109.5
C1A - C6A - C5A	117 64 (16)	H19E—C19B—H19F	109.5
C1A - C6A - C7A	120.82 (16)	O4B-C20B-H20D	109.5
C5A - C6A - C7A	121.53 (16)	O4B-C20B-H20E	109.5
C8A - C7A - C6A	125.57 (16)	H_{20D} C_{20B} H_{20E}	109.5
C8A - C7A - H7AA	117.2	O4B - C20B - H20E	109.5
C6A - C7A - H7AA	117.2	$H_{20} - C_{20} - H_{20} F$	109.5
C7A - C8A - C9A	122 90 (16)	H20F = C20B = H20F	109.5
C7A - C8A - H8AA	118.6	05B-C21B-H21D	109.5
C9A - C8A - H8AA	118.6	05B-C21B-H21F	109.5
014 - C94 - C84	123 11 (16)	H_{21D} C_{21B} H_{21E}	109.5
01A - C9A - C10A	123.11(10) 122.22(16)	05B-C21B-H21E	109.5
C8A - C9A - C10A	122.22(10) 114.65(15)	H_{21D} C_{21B} H_{21F}	109.5
$C_{0A} = C_{0A} = C_{0A}$	122.08 (16)	H21E C21E H21E	109.5
$C_{11A} = C_{10A} = C_{10A} = C_{10A}$	1122.98 (10)	$O(B C) C = H^2 D$	109.5
$C_{0A} = C_{10A} = H_{10A}$	118.5	06B C22B H22E	109.5
$C_{10A} = C_{11A} = C_{12A}$	116.5	H22D C22B H22E	109.5
C10A - C11A - H11A	116.9	06B-C22B-H22E	109.5
	116.0		109.5
C12A = C12A = C17A	110.9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$C_{13A} = C_{12A} = C_{11A}$	120.80 (16)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
C13A - C12A - C11A	120.09 (10)	$O_1 D = C_{23} D = \Pi_{23} D$	109.5
$C_{1/A} - C_{12A} - C_{11A}$	121./1(10)	$U_1 D = U_{22} D = \Pi_{22} D = \Pi$	109.5
$O_{2}A - C_{1}A - C_{1}A$	119.03 (10)	$\Pi 23D - C23B - \Pi 23E$	109.5
U3A—U13A—U14A	118.70(16)	U/B—U23B—H23F	109.5

C12A—C13A—C14A	121.61 (16)	H23D—C23B—H23F	109.5
C15A—C14A—C13A	119.79 (16)	H23E—C23B—H23F	109.5
C15A—C14A—H14A	120.1	C1C—O2C—C18C	118.19 (14)
C13A—C14A—H14A	120.1	C3C—O3C—C19C	117.77 (14)
O6A—C15A—C14A	124.94 (16)	C4C - O4C - C20C	116.72 (14)
O6A - C15A - C16A	115 38 (15)	$C_{13}C_{}O_{5}C_{}C_{2}C_{1}C_{1}$	113 38 (14)
C14A—C15A—C16A	119.68 (16)	C15C—O6C—C22C	116.48 (14)
C17A—C16A—O7A	125.07 (16)	C16C - 07C - C23C	115 83 (14)
C17A—C16A—C15A	119.80 (16)	02C-C1C-C2C	123.35 (15)
07A—C16A—C15A	115.13 (15)	O2C-C1C-C6C	115.95 (15)
C16A—C17A—C12A	121.71 (16)	C2C-C1C-C6C	120.70 (15)
C16A—C17A—H17A	1191	$C_{3}C - C_{2}C - C_{1}C$	119 73 (16)
C12A— $C17A$ — $H17A$	119.1	C3C - C2C - H2CA	120.1
O2A— $C18A$ — $H18A$	109.5	C1C - C2C - H2CA	120.1
O2A— $C18A$ — $H18B$	109.5	03C - C3C - C2C	124 29 (16)
H18A—C18A—H18B	109.5	03C - C3C - C4C	114 83 (15)
$\Omega^2 A = C18A = H18C$	109.5	$C^2C - C^3C - C^4C$	120.88(15)
H18A - C18A - H18C	109.5	04C - C4C - C5C	125.64 (16)
H18B-C18A-H18C	109.5	04C - C4C - C3C	125.04(10) 115.35(15)
Ω_{3} Γ_{19} $\Gamma_$	109.5	$C_{1}^{2}C_{1}^{2}C_{1}^{2}C_{2}^{2}C_{1}^{2}C_{1}^{2}C_{2}^{2}C_{2}^{2}C_{1}^{2}C_{2}^{2}C$	119.01 (16)
O3A - C19A - H19B	109.5	C4C - C5C - C6C	121 57 (16)
H_{10A} C_{10A} H_{10B}	109.5	$C_{4}C_{-}C_{5}C_{-}H_{5}C_{4}$	110.2
03A - C19A - H19C	109.5	CfC—C5C—H5CA	119.2
$H_{10} - C_{10} - H_{10} - H$	109.5	C1C - C6C - C5C	119.2
H19B_C19A_H19C	109.5	C1C - C6C - C7C	110.11(15) 119.90(15)
044 - C204 - H204	109.5	$C_{1}^{2}C_{2}^{2}C$	121.98 (15)
O4A - C20A - H20B	109.5	$C_{2}^{2}C$	127.18(16)
$H_{20A} = C_{20A} = H_{20B}$	109.5	$C_{SC} = C_{TC} = C_{SC}$	127.18 (10)
$\Omega_{120A} = C_{20A} = H_{20C}$	109.5	C6C - C7C - H7CA	116.4
$H_{20A} = C_{20A} = H_{20C}$	109.5	$C_{0}C_{-}C_{1}C_{-}C_{-$	110.4 121.77(15)
$H_{20R} = C_{20A} = H_{20C}$	109.5	$C_{1}C_{1}C_{2}C_{3}C_{2}C_{3}C_{4}C_{4}C_{4}C_{4}C_{4}C_{4}C_{4}C_{4$	121.77 (13)
05A C21A H21A	109.5	$C^{0}C$ $C^{0}C$ $H^{0}C^{0}$	119.1
$O_{5A} = C_{21A} = H_{21A}$	109.5	$C_{9}C_{}C_{8}C_{}H_{8}C_{A}$	119.1 122.05(15)
$U_{21A} = U_{21A} = H_{21B}$	109.5	010 - 000 - 000	123.03(13) 122.05(15)
$n_2 n_2 n_2 n_2 n_3 n_2 n_3 n_3 n_3 n_3 n_3 n_3 n_3 n_3 n_3 n_3$	109.5	$C_{10} = C_{9} = C_{$	122.03(13)
$U_{21A} = U_{21A} = U_{21C}$	109.5	$C_{10} = C_{9} C_{} C_{8} C$	114.90(14)
H21A - C21A - H21C	109.5	$C_{11}C_{-}C_{10}C_{-}U_{10}C_{$	123.70(13)
$H_2IB = C_2IA = H_2IC$	109.5		118.1
O(A = C22A = H22B	109.5		118.1
$U_{0}A = C_{2}ZA = H_{2}ZB$	109.5	C10C - C11C - C12C	124.03 (15)
H22A—C22A—H22B	109.5		117.7
$U_{0}A = C_{2}ZA = H_{2}ZC$	109.5		117.7
H22A - C22A - H22C	109.5	$C_{13}C_{}C_{12}C_{}C_{17}C_{}C_{-$	117.30 (15)
H22B-C22A-H22C	109.5	C13C - C12C - C11C	121.21 (15)
$U/A = U23A = \Pi 23A$	109.5	C1/C - C12C - C11C	121.40 (15)
$U/A - U_2 A - \Pi_2 B$	109.5	050 - 0120 - 0140	119.13 (13)
$\Pi 23A - U 23A - \Pi 23B$	109.5	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	119.10(15) 101.74(15)
$U/A = U23A = \Pi 23U$	109.5	$C_{12}C_{-}C_{13}C_{-}C_{14}C_{-}C_{12}C_{-}C_{14}C_{-}C_{12}C_{-}C_{14}C_{-}C_{12}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	121.74(15)
$H_{23}A - U_{23}A - H_{23}U$	109.5	150 - 0140 - 0130	120.00 (16)
н23В—С23А—Н23С	109.5	C15C—C14C—H14C	120.0

C1B—O2B—C18B	119.11 (14)	C13C—C14C—H14C	120.0
C3B—O3B—C19B	117.48 (15)	O6C—C15C—C14C	125.29 (16)
C4B—O4B—C20B	116.76 (15)	O6C—C15C—C16C	115.24 (15)
C13B—O5B—C21B	116.60 (13)	C14C—C15C—C16C	119.47 (16)
C15B—O6B—C22B	116.72 (14)	C17C—C16C—O7C	125.18 (16)
C16B—O7B—C23B	115.94 (14)	C17C—C16C—C15C	119.61 (16)
O2B—C1B—C6B	116.44 (15)	O7C—C16C—C15C	115.21 (15)
O2B—C1B—C2B	123.29 (16)	C16C—C17C—C12C	121.81 (16)
C6B—C1B—C2B	120.27 (16)	C16C—C17C—H17C	119.1
C3B—C2B—C1B	119.69 (16)	C12C—C17C—H17C	119.1
C3B—C2B—H2BA	120.2	O2C—C18C—H18G	109.5
C1B—C2B—H2BA	120.2	O2C—C18C—H18H	109.5
O3B—C3B—C2B	124.24 (16)	H18G—C18C—H18H	109.5
O3B—C3B—C4B	114.66 (16)	O2C—C18C—H18I	109.5
C2B—C3B—C4B	121.10 (16)	H18G—C18C—H18I	109.5
O4B—C4B—C5B	125.85 (17)	H18H—C18C—H18I	109.5
O4B—C4B—C3B	115.39 (16)	O3C—C19C—H19G	109.5
C5B—C4B—C3B	118.76 (17)	ОЗС—С19С—Н19Н	109.5
C4B—C5B—C6B	121.41 (17)	Н19G—С19С—Н19Н	109.5
C4B—C5B—H5BA	119.3	O3C—C19C—H19I	109.5
C6B—C5B—H5BA	119.3	H19G—C19C—H19I	109.5
C1B—C6B—C5B	118.77 (16)	H19H—C19C—H19I	109.5
C1B—C6B—C7B	119.06 (16)	O4C—C20C—H20G	109.5
C5B—C6B—C7B	122.17 (16)	O4C—C20C—H20H	109.5
C8B—C7B—C6B	127.45 (16)	H20G—C20C—H20H	109.5
C8B—C7B—H7BA	116.3	O4C—C20C—H20I	109.5
С6В—С7В—Н7ВА	116.3	H20G—C20C—H20I	109.5
C7B—C8B—C9B	121.37 (16)	H20H—C20C—H20I	109.5
С7В—С8В—Н8ВА	119.3	O5C—C21C—H21G	109.5
C9B—C8B—H8BA	119.3	O5C—C21C—H21H	109.5
O1B—C9B—C10B	122.79 (15)	H21G—C21C—H21H	109.5
O1B—C9B—C8B	123.08 (16)	O5C—C21C—H21I	109.5
C10B—C9B—C8B	114.11 (15)	H21G—C21C—H21I	109.5
C11B—C10B—C9B	124.36 (16)	H21H—C21C—H21I	109.5
C11B—C10B—H10B	117.8	O6C—C22C—H22G	109.5
C9B—C10B—H10B	117.8	O6C—C22C—H22H	109.5
C10B—C11B—C12B	124.00 (15)	H22G—C22C—H22H	109.5
C10B—C11B—H11B	118.0	O6C—C22C—H22I	109.5
C12B—C11B—H11B	118.0	H22G—C22C—H22I	109.5
C13B—C12B—C17B	117.80 (15)	H22H—C22C—H22I	109.5
C13B—C12B—C11B	121.06 (15)	O7C—C23C—H23G	109.5
C17B—C12B—C11B	121.12 (15)	07С—С23С—Н23Н	109.5
O5B—C13B—C14B	122.15 (15)	H23G—C23C—H23H	109.5
O5B-C13B-C12B	116.78 (14)	O7C—C23C—H23I	109.5
C14B—C13B—C12B	121.07 (15)	H23G—C23C—H23I	109.5
C15B—C14B—C13B	119.85 (15)	H23H—C23C—H23I	109.5
C15B—C14B—H14B	120.1		
C18A—O2A—C1A—C2A	-3.7 (2)	O1B—C9B—C10B—C11B	5.5 (3)
C18A—O2A—C1A—C6A	177.34 (16)	C8B—C9B—C10B—C11B	-173.08 (17)
	(-)		

O2A—C1A—C2A—C3A	-178.51 (16)	C9B-C10B-C11B-C12B	176.23 (16)
C6A—C1A—C2A—C3A	0.4 (3)	C10B-C11B-C12B-C13B	-166.56 (17)
C19A—O3A—C3A—C2A	-0.2 (3)	C10B—C11B—C12B—C17B	11.8 (3)
C19A—O3A—C3A—C4A	178.80 (16)	C21B—O5B—C13B—C14B	-30.2 (2)
C1A—C2A—C3A—O3A	178.18 (16)	C21B—O5B—C13B—C12B	150.82 (16)
C1A—C2A—C3A—C4A	-0.8 (3)	C17B—C12B—C13B—O5B	-179.65 (15)
C20A—O4A—C4A—C5A	3.8 (3)	C11B—C12B—C13B—O5B	-1.3 (2)
C20A—O4A—C4A—C3A	-176.10 (17)	C17B—C12B—C13B—C14B	1.4 (2)
O3A—C3A—C4A—O4A	1.9 (2)	C11B—C12B—C13B—C14B	179.73 (16)
C2A—C3A—C4A—O4A	-179.01 (16)	O5B-C13B-C14B-C15B	179.36 (15)
O3A—C3A—C4A—C5A	-178.01 (16)	C12B—C13B—C14B—C15B	-1.7 (3)
C2A—C3A—C4A—C5A	1.1 (3)	C22B—O6B—C15B—C14B	-7.6 (3)
O4A—C4A—C5A—C6A	179.13 (17)	C22B—O6B—C15B—C16B	171.36 (16)
C3A—C4A—C5A—C6A	-1.0(3)	C13B—C14B—C15B—O6B	179.04 (16)
O2A—C1A—C6A—C5A	178.71 (15)	C13B—C14B—C15B—C16B	0.2 (3)
C2A—C1A—C6A—C5A	-0.3 (3)	C23B—O7B—C16B—C17B	9.6 (2)
O2A—C1A—C6A—C7A	-0.8(2)	C23B—O7B—C16B—C15B	-169.73(15)
C2A—C1A—C6A—C7A	-179.84(16)	06B-C15B-C16B-07B	2.1 (2)
C4A—C5A—C6A—C1A	0.6 (3)	C14B—C15B—C16B—O7B	-178.93(15)
C4A - C5A - C6A - C7A	-17988(16)	06B-C15B-C16B-C17B	-17728(15)
C1A - C6A - C7A - C8A	-17755(17)	C14B-C15B-C16B-C17B	17(2)
C5A - C6A - C7A - C8A	29(3)	07B-C16B-C17B-C12B	178 63 (15)
C6A - C7A - C8A - C9A	-17545(16)	$C_{15B} = C_{16B} = C_{17B} = C_{12B}$	-2.1(3)
C7A - C8A - C9A - O1A	-82(3)	$C_{13B} = C_{12B} = C_{17B} = C_{16B} = C_{16B}$	0.6(2)
C7A - C8A - C9A - C10A	$170\ 30\ (16)$	$C_{11B} = C_{12B} = C_{17B} = C_{16B}$	-177 81 (16)
O1A - C9A - C10A - C11A	-40(3)	$C_{18}C_{}O_{2}C_{}C_{1}C_{}C_{1}C_{}C_{1}C_{$	-39(2)
C8A - C9A - C10A - C11A	177 49 (16)	$C_{18} C_{-02} C_{-01} C_{-02} C_{-01} C_{-02} C_{-0$	176 17 (15)
C9A - C10A - C11A - C12A	-179.03(16)	02C - C1C - C2C - C3C	-17951(16)
C10A— $C11A$ — $C12A$ — $C13A$	-17958(17)	$C_{6}C_{-}C_{1}C_{-}C_{2}C_{-}C_{3$	04(3)
C10A— $C11A$ — $C12A$ — $C17A$	04(3)	$C_{19} C_{-03} C_{-0$	-1.7(2)
$C_{21} = 0.5 = 0.13 = 0.12 \text{ M}$	-11148(18)	$C_{19}^{19} C_{-03}^{-03} C_{-03}^{-03} C_{-04}^{-04} C_{-05}^{-04} C_$	1.7(2)
$C_{21A} = 05A = C_{13A} = C_{14A}$	71 4 (2)	$C_{1}C_{-}C_{2}C_{-}C_{3$	178 69 (16)
$C_{17A} - C_{12A} - C_{13A} - C_{5A}$	-175.63(15)	$C_{1}C_{-}C_{2}C_{-}C_{3}C_{-}C_{4$	-0.3(3)
$C_{11}A - C_{12}A - C_{13}A - O_{5}A$	175.05 (15) 1 3 (2)	$C_{20}^{20} = 0.4^{-0.4} C_{-0.5}^{20} C_{$	-43(3)
C17A - C12A - C13A - C14A	$\frac{1}{4}$, $\frac{3}{2}$	$C_{20}C_{-04}C_{-04}C_{-04}C_{-03}C_{-04}C$	4.5 (5) 176 31 (16)
$C_{11A} = C_{12A} = C_{13A} = C_{14A}$	-178.64.(16)	0^{3} C 0^{3} C 0^{4} C 0^{4} C 0^{4} C	170.31(10)
C11A - C12A - C13A - C14A	176.04(10)	$C_{2}^{2}C_{3}^{2}C_{4}^{2}C$	170.66(15)
$C_{12A} = C_{13A} = C_{14A} = C_{15A}$	-10(3)	$C_{2}C_{-}C_{3}C_{-}C_{4}C_{-}C_{4}C_{-}C_{5$	-178.86(15)
$C_{12A} = C_{13A} = C_{14A} = C_{13A}$	-1.0(3)	$C_{2}^{2}C_{3}^{2}C_{4}^{2}C_{4}^{2}C_{5}^{2}C$	-1/8.80(13)
$C_{22A} = 00A = C_{15A} = C_{14A}$	-177.08(15)	$C_2C = C_3C = C_4C = C_5C$	-170.61.(16)
$C_{22A} = OOA = C_{13A} = C_{10A} = C_{10A}$	-170.14(16)	$C_{4}C_{-}C_{4}C_{-}C_{5}C_{-}C_{6}C_{-}C_{-$	-0.2(2)
$C_{13A} = C_{14A} = C_{15A} = C_{16A}$	-1/9.14(10)	$C_{2}C_{-}C_{4}C_{-}C_{5}C_{-}C_{6}C_{-}C_{6}C_{-}C_{-$	-0.2(3)
$C_{13A} = C_{14A} = C_{15A} = C_{16A} = C_{17A}$	-0.1(3) -144(2)	020 - 010 - 060 - 050	-0.4(2)
$C_{23}A = O_{1}A = C_{10}A = C_{17}A$	-14.4(3)	$C_2C_{-}C_1C_{-}C_6C_{-}C_5C_{-}C_7C$	-0.4(2)
$C_{23}A = O/A = C_{10}A = C_{13}A$	104.96(10) 170.00(15)	020 - 010 - 060 - 070	-1.0(2)
$C_{14A} = C_{15A} = C_{16A} = C_{17A}$	1/9.90(13)	$C_{2}C_{-}C_{1}C_{-}C_{0}C_{-}C_{1}C_{-}C_{-$	1/0.44(10)
C14A - C15A - C16A - C1/A	0.0(3)	$C_{4}C_{-}C_{5}C_{-}C_{6}C_{-}C_{7}C_{-}C_{-$	0.3(3)
OUA - CI3A - CI0A - U/A	0.3(2)	$C_{+}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-}C_{-$	-1/0.49(10)
C14A - C15A - C16A - O/A	-1/8.02(10)		-108.99 (17)
U/A - UI0A - UI/A - UI2A	1/8.9/(10)	$\cup \cup - \cup 0 \cup - \cup / \cup - \cup \delta \cup$	7.8 (3)

C15A—C16A—C17A—C12A	-0.3 (3)	C6C—C7C—C8C—C9C	-178.94 (16)
C13A—C12A—C17A—C16A	-0.7 (3)	C7C—C8C—C9C—O1C	-3.0 (3)
C11A—C12A—C17A—C16A	179.33 (16)	C7C—C8C—C9C—C10C	176.17 (16)
C18B—O2B—C1B—C6B	-179.45 (16)	O1C—C9C—C10C—C11C	-0.7 (3)
C18B—O2B—C1B—C2B	1.4 (3)	C8C—C9C—C10C—C11C	-179.82 (16)
O2B—C1B—C2B—C3B	179.33 (17)	C9C—C10C—C11C—C12C	176.90 (16)
C6B—C1B—C2B—C3B	0.2 (3)	C10C-C11C-C12C-C13C	170.52 (17)
C19B—O3B—C3B—C2B	3.5 (3)	C10C—C11C—C12C—C17C	-11.6 (3)
C19B—O3B—C3B—C4B	-176.27 (16)	C21C—O5C—C13C—C12C	-107.71 (19)
C1B—C2B—C3B—O3B	-179.63 (17)	C21C—O5C—C13C—C14C	73.5 (2)
C1B—C2B—C3B—C4B	0.2 (3)	C17C—C12C—C13C—O5C	-179.32 (15)
C20B—O4B—C4B—C5B	4.4 (3)	C11C—C12C—C13C—O5C	-1.3 (2)
C20B—O4B—C4B—C3B	-176.09 (18)	C17C—C12C—C13C—C14C	-0.6 (3)
O3B—C3B—C4B—O4B	-0.2 (2)	C11C—C12C—C13C—C14C	177.38 (16)
C2B—C3B—C4B—O4B	179.97 (17)	O5C-C13C-C14C-C15C	178.35 (16)
O3B—C3B—C4B—C5B	179.36 (16)	C12C—C13C—C14C—C15C	-0.4 (3)
C2B—C3B—C4B—C5B	-0.5 (3)	C22C—O6C—C15C—C14C	0.4 (3)
O4B—C4B—C5B—C6B	179.85 (17)	C22C—O6C—C15C—C16C	-179.51 (16)
C3B—C4B—C5B—C6B	0.3 (3)	C13C—C14C—C15C—O6C	-178.86 (16)
O2B—C1B—C6B—C5B	-179.52 (16)	C13C—C14C—C15C—C16C	1.0 (3)
C2B—C1B—C6B—C5B	-0.4 (3)	C23C—O7C—C16C—C17C	-8.2 (3)
O2B—C1B—C6B—C7B	0.1 (2)	C23C—O7C—C16C—C15C	171.17 (17)
C2B—C1B—C6B—C7B	179.22 (16)	O6C-C15C-C16C-C17C	179.22 (16)
C4B-C5B-C6B-C1B	0.1 (3)	C14C—C15C—C16C—C17C	-0.7 (3)
C4B—C5B—C6B—C7B	-179.51 (17)	O6C—C15C—C16C—O7C	-0.2 (2)
C1B—C6B—C7B—C8B	176.72 (18)	C14C—C15C—C16C—O7C	179.96 (16)
C5B—C6B—C7B—C8B	-3.7 (3)	O7C—C16C—C17C—C12C	178.97 (17)
C6B—C7B—C8B—C9B	-179.50 (17)	C15C—C16C—C17C—C12C	-0.3 (3)
C7B-C8B-C9B-O1B	-6.0 (3)	C13C—C12C—C17C—C16C	1.0 (3)
C7B-C8B-C9B-C10B	172.61 (17)	C11C—C12C—C17C—C16C	-177.03 (17)

Hydrogen-bond geometry $(Å, \circ)$

Cg3 and Cg4 are the centroids of the	e C1C–C6C and C12C–C	C17C rings, respec	tively.	
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C10B—H10B····O1C ⁱ	0.93	2.29	3.149 (2)	153
C10C—H10C…O1B	0.93	2.33	3.195 (2)	155
C14B—H14B…O1A ⁱⁱ	0.93	2.52	3.353 (2)	149
C21A—H21B···O3A ⁱⁱⁱ	0.96	2.49	3.301 (2)	142
C22A—H22C···O7C ^{iv}	0.96	2.50	3.435 (2)	165
C22B—H22D····O2A ^v	0.96	2.50	3.407 (2)	158
C22B—H22F…O1A ⁱⁱ	0.96	2.58	3.227 (2)	125
C23A—H23A···O5A ⁱ	0.96	2.52	3.308 (2)	140
C23A—H23C…O3C	0.96	2.53	3.452 (2)	161
C23C—H23G···O5C ⁱ	0.96	2.54	3.305 (2)	136
C18C—H18H…Cg4 ⁱⁱ	0.96	2.80	3.678 (2)	152
C20A—H20B···Cg3 ^{vi}	0.96	2.94	3.855 (2)	159

Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+2, -z+1; (iii) -x+2, -y+2, -z+2; (iv) x, -y+3/2, z+1/2; (v) x, y, z-1; (vi) -x+2, -y+2, -z+1.

